If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X=-X^2+42
We move all terms to the left:
X-(-X^2+42)=0
We get rid of parentheses
X^2+X-42=0
a = 1; b = 1; c = -42;
Δ = b2-4ac
Δ = 12-4·1·(-42)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-13}{2*1}=\frac{-14}{2} =-7 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+13}{2*1}=\frac{12}{2} =6 $
| 90+x(x+8)=180 | | 56c−14=1 | | c−14=1 | | 3.8433*10x=38,433 | | 10=2g-3g | | 2(3n-1)=20 | | 4p+8=28* | | 3.8433×10x=38,433 | | 5(-x+3)=50 | | 2.5-0.03x=0.04 | | 6w+5(w-5)=23 | | 100+40+x=180 | | 2(x+4)=2x+1 | | F(x)=2(5)+7 | | 3x+1=63-5x | | 10=56m-34 | | 9x+13=-40 | | -7y+3y=20 | | 12=7a=4a | | X-9=2(x-3)-4 | | (0.75)(5y)=8.25 | | 18=3j—6 | | 6x^2-3x=-7 | | 2x=14=4 | | 4x-×2=60 | | 9x+10=4x+3 | | 3√8x+9=33 | | 6=6x-9 | | -3=13/a | | 6^-n=6^3n | | 1/7x+2/7=14 | | 3x-4=40-4x |